Abstract
New electron-impact ionization (EII) data are presented for neutral atomic nitrogen. The atom is treated as a 67-state system, incorporating Rydberg values up to . State-specific cross sections for the first three states are from published -spline results. Binary-encounter Bethe calculations have been performed for the remaining 64 states. These data are designed for modeling the hypersonic chemistry that occurs when a space vehicle enters Earth’s atmosphere from beyond orbit. The cross sections have been convolved into state-specific thermal rate coefficients and fit with the commonly used Arrhenius–Kooij formula for ease of use in shock-heated air plasma models. Additionally, rate coefficients are provided for a reduced 10-state system for use in coarse-grain models. For a given collisional–radiative model, these fine- and coarse-grain data can be used to generate state-specific rate coefficients for three-body electron–ion recombination, the time-reverse process of EII.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.