Abstract

Perturbative distorted-wave and non-perturbative close-coupling methods are used to calculate electron-impact ionization cross sections for the ground state of the neutral Al atom. Configuration-average distorted-wave calculations are made for both direct ionization and excitation-autoionization contributions. The total perturbative results are found to be almost a factor of 2 higher than experiment over a wide energy range. On the other hand, the R-matrix with pseudo-states results for total ionization are found to be in good agreement with experiment. Comparison of time-dependent close-coupling calculations for the direct ionization with the R-matrix with pseudo-state calculations for total ionization reveals that both the direct ionization and excitation-autoionization contributions are strongly affected by correlation effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.