Abstract

Astrophysics is driven by observations, and in the present era there are a wealth of state-of-the-art ground-based and satellite facilities. The astrophysical spectra emerging from these are of exceptional quality and quantity and cover a broad wavelength range. To meaningfully interpret these spectra, astronomers employ highly complex modelling codes to simulate the astrophysical observations. Important input to these codes include atomic data such as excitation rates, photoionization cross sections, oscillator strengths, transition probabilities and energy levels/line wavelengths. Due to the relatively low temperatures associated with many astrophysical plasmas, the accurate determination of electron-impact excitation rates in the low energy region is essential in generating a reliable spectral synthesis. Hence it is these atomic data, and the main computational methods used to evaluate them, which we focus on in this publication. We consider in particular the complicated open d- shell structures of the Fe-peak ions in low ionization stages. While some of these data can be obtained experimentally, they are usually of insufficient accuracy or limited to a small number of transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.