Abstract

Absolute differential cross sections (DCS's) for electron-impact excitation of the lowest forty electronic levels in atomic neon have been determined for incident electron energies of 30 and 50 eV, for the four lowest levels at 25 eV, and two levels at 100 eV. The cross sections for these forty electronic levels are grouped into fifteen features, six of which represent excitation to resolved single electronic levels and the remaining nine which contain the unresolved contributions from two or more electronic levels. These DCS's were extrapolated to 0\ifmmode^\circ\else\textdegree\fi{} and 180\ifmmode^\circ\else\textdegree\fi{} and integrated to yield absolute integral cross sections as a function of incident electron energy. The results are compared to other experimental and theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.