Abstract

A liquid chromatography-particle-beam mass spectrometer (LC-PB/MS) with interchangeable electron-impact (EI) and glow-discharge (GD) ion sources was evaluated for future application in analysis of botanical extracts. In this work a green tea tincture was characterized for a series of catechin components (catechin, epicatechin, epigallocatechin, and epigallocatechin gallate (EGCG)) and caffeine. Special emphasis was given to EGCG and caffeine, because they are important in determining the possible health effects of the green tea. The effects of instrument operating conditions were evaluated for the EI and GD ionization sources to determine their effect on analyte intensities and fragmentation patterns. These studies furnished information about the effects of these conditions in determining possible ionization pathways in the two ion sources. The mass spectra of these compounds obtained with the GD ion source are EI-like in appearance, with clearly identified molecular ions and fragmentation patterns that are easily rationalized. The absolute limits of detection for EGCG and caffeine were, respectively, 11 ng and 0.77 ng for the EI source and 3.2 ng and 0.61 ng for the GD source. The PB/EIMS and PB/GDMS combinations can be operated in a flow-injection mode, wherein the analyte is injected directly into the mobile phase, or coupled to high-performance liquid chromatography (HPLC), enabling LC-MS analysis of complex mixtures. A reversed-phase chromatographic separation of the green tea tincture was performed on a commercial C18 column using a gradient of water (containing 0.1% TFA) and ACN. Quantification of EGCG and caffeine was performed by the standard addition method. The amounts of EGCG and caffeine in the tested green tea tincture were each approximately 14 mg mL-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.