Abstract
Monolayer films of transition metal dichalcogenides (in particular, MoS2, MoSe2, WS2, and WSe2) can be considered as ideal systems for the studies of high-temperature electron-hole liquids. The quasi-two-dimensional nature of electrons and holes ensures their stronger interaction as compared to that in bulk semiconductors. The screening of the Coulomb interaction in monolayer heterostructures is significantly reduced, since it is determined by the permittivities of the environment (e.g., vacuum and substrate), which are much lower than those characteristic of the films of transition metal dichalcogenides. The multivalley structure of the energy spectrum of charge carriers in transition metal dichalcogenides significantly reduces the kinetic energy, resulting in the increase in the equilibrium density and binding energy of the electron-hole liquid. The binding energy of the electron-hole liquid and its equilibrium density are determined. It is shown that the two-dimensional Coulomb potential should be used in the calculations for the electron-hole liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.