Abstract

The optical response of single-walled carbon nanotubes is dominated by exciton states with unusually large binding energies. We show that screening in semiconducting tubes enhances rather than reduces the electron-hole interaction for separations larger than the tube diameter. This "antiscreening" region deepens the relative energy level of the higher exciton states yielding unconventional excitation spectra. The effect explains the discrepancy in the current experimentally extrapolated exciton binding energies (deduced using conventional model spectra) and those obtained from ab initio calculations on isolated tubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.