Abstract

The differential cross section (DCS) for electron-helium atom collisions in the presence of a bichromatic CO2 laser field is investigated as a function of the scattering angle θ by employing first-Born approximation (FBA) with a simple screening electric potential. We discuss in detail the influence of the scattering geometry, the photon energy and the number of photons exchanged on the DCSs. These illustrate that the three factors have important effects on the elastic scattering and the screening electric potential is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.