Abstract
Abstract Recent X-ray observations of merger shocks in galaxy clusters have shown that the post-shock plasma is two-temperature, with the protons being hotter than the electrons. In this work, the second of a series, we investigate the efficiency of irreversible electron heating in perpendicular low Mach number shocks, by means of two-dimensional particle-in-cell simulations. We consider values of plasma beta (the ratio of thermal and magnetic pressures) in the range 4 ≲ β p0 ≲ 32, and sonic Mach number (the ratio of shock speed to pre-shock sound speed) in the range 2 ≲ M s ≲ 5, as appropriate for galaxy cluster shocks. As shown in Paper I, magnetic field amplification—induced by shock compression of the pre-shock field, or by strong proton cyclotron and mirror modes accompanying the relaxation of proton temperature anisotropy—can drive the electron temperature anisotropy beyond the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance, and allows for efficient entropy production. We find that the post-shock electron temperature T e2 exceeds the adiabatic expectation by an amount (here, T e0 is the pre-shock temperature), which depends only weakly on the plasma beta over the range 4 ≲ β p0 ≲ 32 that we have explored, as well as on the proton-to-electron mass ratio (the coefficient of ≃0.044 is measured for our fiducial , and we estimate that it will decrease to ≃0.03 for the realistic mass ratio). Our results have important implications for current and future observations of galaxy cluster shocks in the radio band (synchrotron emission and Sunyaev–Zel’dovich effect) and at X-ray frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.