Abstract
The energy partition in high Mach number collisionless shock waves is central to a wide range of high-energy astrophysical environments. We present a new theoretical model for electron heating that accounts for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the difference in inertia between electrons and ions, resulting in differential scattering of the particles off a decelerating magnetically dominated microturbulence across the shock transition. We show that the self-consistent interplay between the resulting ambipolar-type electric field and diffusive transport of electrons leads to efficient heating in the magnetic field produced by the Weibel instability in the high Mach number regime and is consistent with fully kinetic simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.