Abstract

Measurements are presented of electron heat transport with non-Maxwellian (flattopped) distributions due to inverse bremsstrahlung absorption of intense microwaves in the University of California at Davis Aurora II device [Rogers et al., Phys. Fluids B 1, 741 (1989)]. The plasma is created by pulsed discharge in a cylindrical vacuum chamber with surface magnets arranged to create a density gradient. The ionization fraction (∼1%) is high enough that charged particle collisions are strongly dominant in the afterglow plasma. A short microwave pulse (∼2 μs) heats a region of the afterglow plasma (ne/ncr≤0.5) creating a steep axial (LT∼1–10λei) temperature gradient. Langmuir probes are used to measure the relaxation of the heat front after the microwave pulse. Time and space resolved measurements show that the isotropic component of the electron velocity distribution is flat topped (∼exp[−(v/vm)m], m≳2) in agreement with Fokker–Planck calculations using the measured density profile. Classical heat transport theory is not valid both because the isotropic component of the electron velocity distribution is flattopped and the temperature gradients are very steep.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.