Abstract

We present transport measurements on a bilayer graphene sheet with a homogeneous back gate and a split top gate. The electronic transport data indicate the capability of directing electron flow through bilayer graphene nanostructures purely defined by electrostatic gating. Comparing the transconductance data recorded for different top gate geometries—continuous barrier and split gate—the observed transport features for the split gate can be attributed to the interference effects inside the narrow opening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.