Abstract
Living organisms are characterized by the ability to process energy (all release heat). Redox reactions play a central role in biology, from energy transduction (photosynthesis, respiratory chains) to highly selective catalyzed transformations of complex molecules. Distance and scale are important: electrons transfer on a 1 nm scale, hydrogen nuclei transfer between molecules on a 0.1 nm scale, and extended catalytic processes (cascades) operate most efficiently when the different enzymes are under nanoconfinement (10 nm-100 nm scale). Dynamic electrochemistry experiments (defined broadly within the term "protein film electrochemistry," PFE) reveal details that are usually hidden in conventional kinetic experiments. In PFE, the enzyme is attached to an electrode, often in an innovative way, and electron-transfer reactions, individual or within steady-state catalytic flow, can be analyzed in terms of precise potentials, proton coupling, cooperativity, driving-force dependence of rates, and reversibility (a mark of efficiency). The electrochemical experiments reveal subtle factors that would have played an essential role in molecular evolution. This article describes how PFE is used to visualize and analyze different aspects of biological redox chemistry, from long-range directional electron transfer to electron/hydride (NADPH) interconversion by a flavoenzyme and finally to NADPH recycling in a nanoconfined enzyme cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.