Abstract

The electron energy distribution function (EEDF) at different radial positions is derived from Langmuir probe measurements in the CASTOR tokamak edge plasma using the first derivative method. It is shown that the EEDFs are not Maxwellian but can be approximated as bi-Maxwellians with one dominant, low temperature electron population and one minority composed of hotter electrons. In the limiter shadow the measured EEDFs are Maxwellian. The values of the plasma potential and electron densities at different radial positions are also evaluated. The results presented in this paper demonstrate that the first derivative method allows one to acquire additional plasma parameters using the electron part of the current–voltage characteristics in strongly magnetized tokamak edge plasmas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call