Abstract

The four Magnetospheric Multiscale spacecraft encountered a reconnection region in the Earth's magnetospheric tail on 11 July 2017. Previous publications have reported characteristics of the electron diffusion region, including its aspect ratio, the reconnection electric field, plasma wave generation from electron beams in its vicinity, and energetic particles in the Earthward exhaust. This paper reports on the investigation of conversion of electromagnetic energy to electron kinetic energy (by J·E) and the ensuing conversion of electron beam energy to electron thermal energy via the pressure–strain interaction. The main result is that omnidirectional, compressive dissipation of electron energy dominates in the positive J·E region, while incompressive parallel dissipation dominates in the inflow region where J·E is small. The existence of parallel electric fields in the inflow region supports previous suggestions that electron trapping by these fields contributes to the parallel dissipation. All of the results are reproduced quantitatively within a factor of two with a 2.5-D particle-in-cell simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.