Abstract

Conducting steady-states of doped bilayer graphene have a non-zero sublattice pseudospin polarization. Electron-electron interactions renormalize this polarization even at zero temperature, when the phase space for electron-electron scattering vanishes. We show that because of the strength of interlayer tunneling, electron-electron interactions nevertheless have a negligible influence on the conductivity which vanishes as the carrier number density goes to zero. The influence of interactions is qualitatively weaker than in the comparable cases of single-layer graphene or topological insulators, because the momentum-space layer pseudospin vorticity is 2 rather than 1. Our study relies on the quantum Liouville equation in the first Born approximation with respect to the scattering potential, with electron-electron interactions taken into account self-consistently in the Hartree-Fock approximation and screening in the random phase approximation. Within this framework the result we obtain is exact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.