Abstract

Lateral diffusion constants of the stearic acid nitroxide radical spin label 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolindinyl oxide in dispersions of dimyristoyl phosphatidylcholine have been measured. Electron-electron double resonance methods were used to determine the product of the bimolecular collision frequency and T1e, the electron spin-lattice relaxation time. T1e in turn was measured by the technique of saturation recovery. The theoretical model of Träuble and Sackmann was then used to relate the bimolecular collision frequencies to the diffusion constants. Results are in agreement with other methods. Lower spin-label concentrations than were used in previous electron paramagnetic resonance studies are needed (label-to-lipid ratio less than 0.5 mol%). Analysis of the data also yields values of the nitrogen nuclear spin-lattice relaxation time of the nitroxide moiety. These values are indicative of membrane fluidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.