Abstract

The electron transfer resulting from illumination and dark storage of PS II has been studied using EPR signals from several electron carriers. The recombination of D + (Signal II) and Q − A formed by illumination occurred during dark storage at 77 K and was used to deplete reaction centres of D +. The donor D was then shown to be oxidized in the dark by the S 2 state of the oxygen-evolving complex. A slow change which occurred during dark storage of PS II samples was detected using the power saturation characteristics of D. We interpret this effect on D to be an indirect result of a rearrangement of the manganese complex during long-term dark adaptation. A role for D in the stability, protection and perhaps initial manganese binding of the oxygen-evolving complex is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.