Abstract
AbstractUsing data from the MMS mission and the First‐Order Taylor Expansion (FOTE) method, here we reveal electron distribution functions around a reconnection X‐line at the Earth's magnetopause. We find cigar distribution of electrons in both the magnetosphere‐side and magnetosheath‐side inflow regions, isotropic distribution of electrons at the separatrix, and loss of high‐energy electrons in the antiparallel direction in the magnetosheath‐side inflow region. We interpret the formation of cigar distribution in the inflow regions using the Fermi mechanism—as suggested in previous simulations, the loss of high‐energy electrons in the magnetosheath side using the parallel electric fields—which evacuate electrons to escape the diffusion region along the antiparallel direction, and the isotropic distribution at the separatrix using the pitch angle scattering by whistler waves—which exist frequently at the separatrix. We also find that the electron distribution functions can change rapidly (within 60 ms) from isotropic to cigar as the spacecraft moves slightly away from the separatrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.