Abstract

We report electron diffraction of cationic argon nanoclusters embedded in superfluid helium droplets. Superfluid helium droplets are first doped with neutral argon atoms to form nanoclusters, and then the doped droplets are ionized by electrons. The much lower ionization energy of argon ensures that the positive charge resides on the Ar nanocluster. Using different stagnation temperatures and therefore droplets with different sizes, we have been able to preferentially form a small ionic cluster containing 2-4 Ar atoms and a larger cluster containing 7-11 atoms. The fitting results of the diffraction profiles agree with structures reported from theoretical calculations, containing a cationic trimer core with the remaining atoms largely neutral. This work testifies to the feasibility of performing electron diffraction from ionic species embedded in superfluid helium droplets, dispelling the concern over the particle density in the diffraction region. However, the large number of neutral helium atoms surrounding the cationic nanoclusters poses a challenge for the detection of the helium solvation layer, and the detection of which awaits further technological improvements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.