Abstract

The effect of charge disorder on the formation of an inhomogeneous state of the electron system in the conduction band in BaPb1 − xSbxO3 superconducting oxides is investigated experimentally by NMR methods. The NMR spectra of 17O are measured systematically, and the contributions from 17O atoms with different cation nearest surroundings are identified. It is found that microscopic regions with an elevated spin density of charge carriers are formed within two coordination spheres near antimony ions. Nuclei of the superconducting phase of the oxide (regions with an elevated antimony concentration) microscopically distributed over the sample are detected in compounds with x = 0.25 and 0.33. Experiments in which a double resonance signal of the spin echo of 17O-207Pb and 17O-121Sb are measured in the metal phase of BaPb1 − xSbxO3 oxides are carried out for the first time. The constants of indirect heteronuclear spin-spin 17O-207Pb interaction are determined as functions of the local Knight shift 207Ks. The estimates of the constants of the indirect interaction between the nuclei of the nearest neighbors (O-Pb and Pb-Pb atoms) and analysis of evolution of the NMR spectra of 17O upon a change in the antimony concentration are convincing evidence in favor of the development of a microscopically inhomogeneous state of the electron system in the metal phase of BaPb1 − xSbxO3 oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.