Abstract

A new approach for obtaining interacting quantum atoms-defined components of binding energy of intermolecular interactions, which bypasses the use of standard six-dimensional integrals and two-particle reduced density matrix (2-RDM) reconstruction, is proposed. To examine this approach, three datasets calculated within the density functional theory framework using the def2-TZVP basis have been explored. The first two, containing 53 weakly bound bimolecular associates and 13 molecular clusters taken from the crystal, were used in protocol refinement, and the third one containing other 20 bimolecular and three cluster systems served as a validation reference. In addition, to verify the performance of the proposed approach on an exact 2-RDM, calculations within the coupled cluster formalism were performed for part of the first set systems using the cc-pVTZ basis set. The process of optimization of the proposed parametric model is considered, and the role of various energy contributions in the formation of non-covalent interactions is discussed with regard to the obtained trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.