Abstract

Electrons produced in atmospheric pressure corona discharges are used for a uariety of beneficial purposes including the destruction of gaseous contaminants, and surface treatment. In other applications, such as electrostatic precipitators and photocopiers, unintended reactions such as ozone production and deposition of silicon dioxide are detrimental. In both situations, a kinetic description of the electron distribution in the corona plasma is required to quantify the chemical processes. In this paper, the electron density and energy distributions are numerically determined for a positiue dc corona discharge along a wire. The electron density distribution is obtained from the 1-D charge carrier continuity equations and Maxwell’s equation. The non-Maxwellian electron kinetic energy distribution is determined from the Boltzmann equation. The effects of wire size (10-1000 µm) and current density (0.1‐100 µA/cm of wire) on number density and energy distribution of electrons are presented. With increasing current, the electron density increases, but the thickness of the plasma and the electron energy distribution are not affected. Smaller electrodes produce thinner plasmas and fewer, but more energetic electrons, than larger wires. The effect of electrode size on the electron-impact chemical reaction rate is illustrated by the rates of dissociation and ionization of oxygen and nitrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.