Abstract

The specific properties of tubular and fullerenlike silicon nanoparticles depend on theirs electronic structure, which is directly related to the surface geometry. Using density functional approach, a novel dual nature of the surface structure of silicon nanotubes which depends on the type of nanotube have been revevaled. The rippled form of the surface has shown to be a favorable one for (n, n) type structure and the most stable form for (n, 0) Si NT is the nanotube with a smooth-walled graphene-like surface. The phenomenon is explained by the relative position of the non-hybridized p orbitals on the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.