Abstract

The relaxation to equilibrium of an ensemble of electrons dilutely dispersed in a large excess of CH4 is studied with solutions of the Boltzmann equation. Elastic and vibrationally inelastic collision processes are included in the analysis. The relaxation time for the approach to equilibrium defined for the relaxation of the average electron energy is determined for two different cross section sets. The kinetic theory formalism, based on the Boltzmann equation, is compared with the formalism used in radiation chemistry and physics and based on the Spencer–Fano equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call