Abstract

Dynamic nuclear polarization (DNP) increases NMR sensitivity by transferring polarization from electron to nuclear spins. Herein, we demonstrate that electron decoupling with chirped microwave pulses enables improved observation of DNP-enhanced 13 C spins in direct dipolar contact with electron spins, thereby leading to an optimal delay between transients largely governed by relatively fast electron relaxation. We report the first measurement of electron longitudinal relaxation time (T1e ) during magic angle spinning (MAS) NMR by observation of DNP-enhanced NMR signals (T1e =40±6 ms, 40 mM trityl, 4.0 kHz MAS, 4.3 K). With a 5 ms DNP period, electron decoupling results in a 195 % increase in signal intensity. MAS at 4.3 K, DNP, electron decoupling, and short recycle delays improve the sensitivity of 13 C in the vicinity of the polarizing agent. This is the first demonstration of recovery times between MAS-NMR transients being governed by short electron T1 and fast DNP transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.