Abstract

Dispersion and accessibility conditions for electron cyclotron waves are investigated for arbitrary weakly relativistic plasmas and for specific isotropic and loss-cone distributions. The transition between the cold plasma and vacuum dispersion relations is investigated as a function of temperature and density. The behaviour of mode structure (including mode coupling), cut-offs and resonances are also examined. Generalizations are obtained of earlier results which indicate that access by extraordinary waves to regions nearthe cyclotron layer from the low-field side is easier in weakly relativistic plasmas than predicted by cold plasma theory because of a reduction in the cut-off frequency of the fast extraordinary mode. This effect is found to be more pronounced in loss-cone distributions than in isotropic distributions, permitting access at temperatures considerably lower than those predicted in the isotropic case. Extra loss-cone modes are found to appear near the cyclotron frequency in loss-cone plasmas which also exhibit instabilities near the cyclotron harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.