Abstract

Pre-ionization experiments have been performed on a tokamak by injecting about 80 kW of microwave power at 35 GHz for up to 15 ms. Microwave absorption occurs at the electron cyclotron and upper hybrid resonance frequencies as predicted by theory. Pre-ionization causes substantial (40%) reductions in loop voltage during the initial phase of the tokamak shot. Flux (volt-second) savings with pre-ionization are about 30% in the first 2 ms or about 2% of the total flux expenditure in a tokamak shot. The plasma current begins 200 μs earlier and rises 1.4 times more rapidly in the pre-ionized case. Electron densities of 5 × 1012 cm−3 can be sustained throughout the microwave pulse with only a toroidal magnetic field during microwave injection. The bulk electron temperature in the pre-ionized plasma is about 10 eV although there are indications of higher electron temperatures (50 eV) in the upper hybrid resonance layer. Although questions exist concerning the quiescent behaviour of the pre-ionized plasma, the observed parameters are shown to be consistent with a theory which employs classical models of energy and particle balance. During the early stages of Ohmic heating, the pre-ionization is effective in decreasing the peak of the radiated power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call