Abstract
In order to form HgTe-CdTe superlattice diode arrays, a well-controlled etch process must be developed to form mesa structures on HgTe-CdTe superlattice layers. Wet etch processes result in nonuniform, isotropic etch profiles, making it difficult to control etch depth and diode size. In addition, surface films such as a Te-rich layer may result after wet etching, degrading diode performance. Recently, a dry etch process for HgTe-CdTe superlattice materials has been developed at Martin Marietta using an electron cyclotron resonance plasma reactor to form mesa diode structures. This process results in uniform, anisotropic etch characteristics, and therefore may be a better choice for etching superlattice materials than standard wet etch processes. In this paper, we will present a comparison of etch processes for HgTe-CdTe superlattice materials using electron microscopy, scanning tunneling microscopy, surface profilometry, and infrared photoluminescence spectroscopy to characterize both wet and dry etch processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.