Abstract

Based on the experience of the SILHI electron cyclotron resonance (ECR) ion source for the IPHI accelerator, which produces routinely 100-120 mA H(+) beam, the CEA-Saclay is in charge of the design and realization of the 140 mA cw deuteron source for the IFMIF project (International Fusion Materials Irradiation Facility). IFMIF is an accelerator-based neutron irradiation facility consisting of two accelerators of 125 mA D(+) beam at 40 MeV that hit in parallel a lithium target. IFMIF utilizes the deuteron-lithium (d-Li) neutron, producing a reaction to simulate the 14 MeV neutron environment in deuterium-tritium (D-T) fusion reactors. In the framework of the IFMIF EVEDA phase (Engineering Validation and Engineering Design Activities), we are studying a cw ECR ion source with a new extraction system to allow high current extraction while keeping a low divergence as well as a small emittance. Starting from SILHI five-electrode system with H(+) ions, the extracted beam characteristics as well as electric field conditions are compared with the cases of four- and three-electrode extraction systems. Experimental results made on the SILHI source with H(+) ions are briefly discussed. Extensive experimental results on the new source test bench BETSI are expected as soon as the design and fabrication of a dedicated extraction system with a new set of electrodes will be finished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call