Abstract

A new model is developed for electron-cyclotron maser emission from flaring loops, which incorporates competition between driving of the instability and maser-induced relaxation, together with interactions between small neighboring regions of unstable plasma. This results in a picture in which radiation is emitted in bursts from regions whose length scale is determined self-consistently by previous bursts, while the unstable plasma fluctuates about the point, close to marginal stability, at which driving of the instability is balanced by relaxation due to maser-induced electron diffusion. Under the conditions applicable to flaring loops, time scales of fundamental x-mode (x1) driving and saturation are approximately equal at ∼ 1 ms, resolving a (104–106)-fold discrepancy in previous models and agreeing with the observed time scales of microwave spike bursts. Saturation effects are found to be especially effective in suppressing amplification of the most strongly growing modes. This suppression enables fundamental o-mode (o1) and second-harmonic x-mode (x2) emission to compete more effectively against x1 emission for the available free energy than has previously been estimated. Consideration of mode competition, burst time scales, suppression of growth due to overlap between amplification and absorption bands, and escape of radiation through absorption layers to the observer, implies that the observed radiation probably escapes from the corona principally in the o-mode, either emitted directly as o1 radiation or mode converted from x1 emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call