Abstract

The many-body quantum nature of molecules determines their static and dynamic properties, but remains the main obstacle in their accurate description. Ultrashort extreme ultraviolet pulses offer a means to reveal molecular dynamics at ultrashort timescales. Here, we report the use of time-resolved electron-momentum imaging combined with extreme ultraviolet attosecond pulses to study highly excited organic molecules. We measure relaxation timescales that increase with the state energy. High-level quantum calculations show these dynamics are intrinsic to the time-dependent many-body molecular wavefunction, in which multi-electronic and non-Born−Oppenheimer effects are fully entangled. Hints of coherent vibronic dynamics, which persist despite the molecular complexity and high-energy excitation, are also observed. These results offer opportunities to understand the molecular dynamics of highly excited species involved in radiation damage and astrochemistry, and the role of quantum mechanical effects in these contexts.

Highlights

  • The many-body quantum nature of molecules determines their static and dynamic properties, but remains the main obstacle in their accurate description

  • XUV excitation may populate a multitude of non-Born−Oppenheimer states with strong multielectronic character, leading to a truly many-body molecular wavefunction whose time evolution is driven by the complex entanglement between the large number of electronic and nuclear degrees of freedom

  • The experiment was performed on an XUV beamline consisting of a compact XUV-IR interferometer based on an XUV attosecond pulse train with an envelope of sub-30 fs and fs IR beams, coupled to a velocity map imaging (VMI) spectrometer

Read more

Summary

Introduction

The many-body quantum nature of molecules determines their static and dynamic properties, but remains the main obstacle in their accurate description. The XUV pulse ionizes the neutral molecules and populates excited cationic states, with energies near the double-ionization level (IP2 = 21.5 eV) (Fig. 1b). The time-resolved photoelectron spectrum (TR-PES) probes the dynamics of the many-body quantum cationic states (Fig. 1c).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call