Abstract
Diagrammatic many-body perturbation theory is used to calculate the electronic energy and the static electric dipole polarizability of the hydrogen molecule in its ground state. An amply extended discrete basis set of Gaussian orbitals is employed to minimize basis set errors and single-electron states are generated by the Hartree–Fock VN potential. The correlation energy is evaluated through third order and with some higher-order corrections included by denominator shifts to recover about 95% of the total correlation energy. Dipole polarizabilities are calculated through second order in electron correlation with an accuracy of ∼2%. Also the energy-denominator decoupling theorem is explicitly proved by invoking combinatorial analysis to implement extensive denominator shifts. Considering the values obtained, some comments are given on the application of partial summation techniques to molecular problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.