Abstract

We present all-electron quantum Monte Carlo simulations on the anionic, neutral, and cationic boron clusters BQn with up to 13 atoms (Q = -1, 0, +1 and n ≤ 13). Accurate total energies of these clusters are obtained and an excellent agreement is reached with available experimental results for adiabatic and vertical detachment energies. We also perform very accurate Hartree-Fock calculations in the complete-basis-set limit where electron correlation is absent. In combination with the FN-DMC and HF-CBS results, we quantify the correlation effects and present the first attempt for a systematic investigation on the electron correlation effects in boron clusters. The obtained results show that, in general, electron correlation may contribute significantly to both the atomic and electronic structures of the boron clusters, manifested in the quantities such as the average binding energies of the clusters, atomic dissociation energies, detachment energies, and ionization potentials. For instance, the calculations indicate that the electron correlation maintains the bound state of cationic cluster B2+ and it also contributes 99% of the detachment energy of the anionic cluster B5-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.