Abstract

To reveal the structure-function relationship of membrane proteins, a membrane environment is often used to establish a suitable platform for assembly, functioning, and measurements. The control of the orientation of membrane proteins is the main challenge. In this study, the electron conductivity and photocurrent of a light-harvesting/reaction center core complex (LH1-RC) embedded in a lipid membrane were measured using conductive atomic force microscopy (C-AFM) and photoelectrochemical analysis. AFM topographs showed that LH1-RC molecules were well-orientated, with their H-subunits toward the membrane surface. Rectified conductivity was observed in LH1-RC under precise control of the applied force on the probe electrode (<600 pN). LH1-RC embedded in a membrane generated photocurrent upon irradiation when assembled on an electrode. The observed action spectrum was consistent with the absorption spectrum of LH1-RC. The control of the orientation of LH1-RC by lipid membranes provided well-defined conductivity and photocurrent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.