Abstract

In the superconducting magnets of the Large Hadron Collider (LHC) at CERN, most of the beam-induced heat load is intercepted by a beam-screen (BS) cryogenically cooled to 5–20 K. When circulating the bunched proton beam, an electron cloud (EC) can form and bombard the BS copper surface with high doses of predominantly low-energy electrons, which desorb gas and consequently increase the pressure. The beam-induced pressure rise decreases during operation as the electron irradiation diminishes the secondary electron yield (SEY) and the electron-stimulated desorption (ESD) yield, a phenomenon referred to as ‘beam conditioning’. Low ESD and SEY values achieved rapidly are requisite to mitigate EC and maintain UHV in storage rings. We report data on ESD and SEY electron conditioning completed at cryogenic temperature with 0–1 keV electrons up to an electron dose of 5.10−3 C mm−2. Our results show that SEY conditioning depends on the primary electron energy and also that ESD yield significantly decreases with temperature. At 15 K, the amorphous-carbon coating and laser-treated copper present SEY below 1.1 and have initial ESD yields 3–6 times lower than OFE copper. Our results conform to the SEY and ESD's general understanding and extend it towards cryogenic temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.