Abstract

Phase stability in NbCr{sub 2}-based transition-metal Laves phases was studied, based on the data reported for binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves polytypes were determined as followed: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88--7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure is stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of Mg-based Laves phases and transition-metal A{sub 3}B intermetallic compounds is also reviewed and compared with the present observations in transition-metal Laves phases. In order to verify the e/a/phase stability relationship experimentally, additions of Cu (with e/a = 11) were selected to replace Cr in the NbCr{sub 2} Laves phase. Experimental results for the ternary Nb-Cr-Cu system are reported and discussed in terms of the correlation between the e/a ratio and phase stability in NbCr{sub 2}-based Laves phases. A new phase was found, which has an average composition of Nb-47Cr-3Cu. Within the solubility limit, the electron concentration and phase stability relationship is obeyed in the Nb-Cr-Cu system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call