Abstract

We demonstrate that both the empirical pseudopotential method (EPM) and the linear combination of atomiclike orbitals (LCAO) approach are capable of producing consistent electronic charge distributions in a compound semiconductor. Since the EPM approach is known to produce total valence electron charge densities which compare well with experimental x-ray data (e.g., Si), this work serves as a further test for the LCAO method. In particular, the EPM scheme, which uses an extended plane-wave basis, and the LCAO scheme, which employs a localized Gaussian basis, are used, with the same empirical potential as input, to analyze both the total valence electron charge density and the charge density of the first conduction band at the \ensuremath{\Gamma}, L, and X k points of the Brillouin zone. These charge densities are decomposed into their s-, p-, and d-orbital contributions, and this information is used to interpret the differences in the topologies of the conduction bands at \ensuremath{\Gamma}, L, and X. Such differences are crucial for a comprehensive understanding of interstitial impurities and the response of specific band states to perturbations in compound semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.