Abstract

Abstract Thin gallium phosphide layers were deposited on (0 0 1) Silicon surfaces via organometallic vapor phase epitaxy and characterized by electron channeling contrast imaging (ECCI). Stacking fault pyramids at a density of up to 6 × 107 cm−2 were identified in the GaP nucleation layer by varying the diffraction conditions. We show that these defects originate at the GaP/Si interface and propagate on all four {1 1 1} planes. We observed that such stacking fault pyramids interact with the gliding of misfit dislocations during lattice-mismatched growth and enhance the threading dislocation density. The initial pulsing of TEGa and TBP during the nucleation of GaP on Silicon has been found to strongly influence the formation of those pyramidal defects. Changing the number of pulse cycles allowed us to lower their density by two orders of magnitude from 6 × 107 cm−2 to 4 × 105 cm−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.