Abstract
The electron captures by projectile ions from hydrogenic ions are investigated in strongly coupled semiclassical plasmas. The electron capture radius by the projectile ion is obtained by the effective screened pseudopotential model taking into account both the plasma screening and quantum effects. The semiclassical version of the Bohr-Lindhard method is applied to obtain the electron capture probability. The impact-parameter trajectory analysis is applied to the motion of the projectile ion in order to visualize the electron capture radius and capture probability as functions of the impact parameter, thermal de Broglie wavelength and Debye length. The results show that the quantum and plasma screening effects significantly reduce the electron capture probability and the capture radius. It is found that the electron capture position is shifted to the core of the projectile ion with increasing the thermal de Broglie wavelength. It is also found that the quantum effects on the electron capture probability are more significant than the collective screening effects on the electron capture probability. The electron capture probability is found to be significantly increased with an increase of the charge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European Physical Journal D - Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.