Abstract

Although electron capture dissociation (ECD) offers many advantages for structural elucidation, a fundamental understanding of all possible processes following electron capture is necessary if ECD is to succeed in the characterization of unknowns. Many biologically active compounds have non-standard structures, e.g, N-alkylation, branching, cyclization, and ester linkages. Here we report ECD of cyclodepsipeptides (valinomycin and beauvericin), including N-methylated structures (beauvericin), branched peptides (AcA 3K(G 3)A 3NH 2 and A 3K(G 3)A 3NH 2), and oligomers of ε-amino acids (ε-peptides) (Ac(Ahx) 6K and (Ahx) 6K) to establish the behavior of such non-standard structures. ECD of cyclodepsipeptides yielded numerous backbone fragments but no charge-reduced species, consistent with a radical cascade mechanism. ECD of ε-peptides resulted in a and y fragments only, suggesting that the NCα c/z fragmentation channel is impeded in those structures. ECD of branched peptides resulted in complex fragmentation patterns, characterized by the presence of the immonium related m ion from the modified residue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.