Abstract

Collisions between 32.2, 130.5 and 570.5 keV Ar11+ ions and CO molecules have been studied using the Macdonald Laboratory CRYEBIS. Coincidence time of flight was used to detect all recoil ions originating from each molecule and a position sensitive detector was used to determine final projectile charge states. Single-and double-electron capture cross-sections are much larger than those for ionization at these collision energies. The dominant recoil channel associated with the Ar10+ final charge state is the CO+ molecular ion. The main ion-pair channel is the C+ + O+ dissociation of CO2+ while the relative yields of higher charge states of the transient COq+ fall off rapidly. The dissociated ions corresponding to charge states up to CO4+ were detected in coincidence with Ar10+ (and Ar9+), indicating that multielectron capture followed by autoionization occurs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call