Abstract

Electron capture and excitation processes in proton–hydrogen atom collisions taking place in dense quantum plasmas are studied by employing the two-centre atomic orbital close-coupling (TC-AOCC) method. The Debye–Hückel cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of a hydrogen atom with DHC potential are investigated as a function of the screening strength of the potential. It is found that the decrease in binding energy of nl levels with increasing screening strength is considerably faster than in the case of the Debye–Hückel (DH) screening potential, appropriate for description of charged particle interactions in weakly coupled classical plasmas. This results in a reduction in the number of bound states in the DHC potential with respect to that in the DH potential for the same plasma screening strength, and is reflected in the dynamics of excitation and electron capture processes for the two screened potentials. The TC-AOCC cross sections for total and state-selective electron capture and excitation cross sections with the DHC potential are calculated for a number of representative screening strengths in the 1–300 keV energy range and compared with those for the DH and pure Coulomb potential. The total capture cross sections for a selected number of screening strengths are compared with the available results from classical trajectory Monte Carlo calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call