Abstract

The outer valence electron binding energies and the fundamental gap of p-nitroaniline (PNA) in water were determined by electron propagator theory. The adopted methodology relies on the calculation of electron binding energies by using configurations generated by Born-Oppenheimer molecular dynamics of PNA in water. The fundamental gap (Eg) of PNA in water was estimated from the first ionisation energy (IE) and the first vertical electron affinity VEA (Eg=IE-VEA). In liquid water Eg is predicted to be 6.5±0.5eV (OVGF), which is ∼3.3eV greater than the experimental optical gap (3.25eV).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.