Abstract

Ab initio electron propagator methods are employed to predict the vertical electron attachment energies (VEAEs) of OH3 +(H2O)n clusters. The VEAEs decrease with increasing n, and the corresponding Dyson orbitals are diffused over exterior, non-hydrogen bonded protons. Clusters formed from OH3 - double Rydberg anions (DRAs) and stabilized by hydrogen bonding or electrostatic interactions between ions and polar molecules are studied through calculations on OH3 -(H2O)n complexes and are compared with more stable H-(H2O)n+1 isomers. Remarkable changes in the geometry of the anionic hydronium-water clusters with respect to their cationic counterparts occur. Rydberg electrons in the uncharged and anionic clusters are held near the exterior protons of the water network. For all values of n, the anion-water complex H-(H2O)n+1 is always the most stable, with large vertical electron detachment energies (VEDEs). OH3 -(H2O)n DRA isomers have well separated VEDEs and may be visible in anion photoelectron spectra. Corresponding Dyson orbitals occupy regions beyond the peripheral O-H bonds and differ significantly from those obtained for the VEAEs of the cations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.