Abstract

In this present theoretical study, we investigate electron Bernstein wave (EBW) aided collisional nanocluster plasma heating by nonlinear interaction of two super-Gaussian laser beams. The interactions of laser beams electric field profiles with electronic clouds of nanoclusters cause the beat wave. The nonlinear ponderomotive force is generated through the beat wave. There may be good potential to excite the EBW aiding cluster plasma to lead electron heating via cyclotron damping of the Bernstein wave. An analytical scheme is proposed for the anomalous heating and evolution of electron temperature by using this mechanism. Graphical discussions were promised to achieve extreme heating rate via the spatial shape of super-Gaussian laser beams and the resonance condition of beat wave to surface plasmon frequency. The heating is controlled by tuning the laser beam width, mode index, collisional frequency, clustered radius, and density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call