Abstract
ABSTRACTVarious metal fluoride crystals were subjected to electron beam irradiation at 200 and 300 kV using transmission electron microscopy in order to study in-situ fabrication of 3D metal nanostructures. Lithium fluoride, cobalt fluoride and aluminum fluoride salt fragments were chemically reduced and transformed by the electron beam to the corresponding metals. Using live video recording we observe that LiF crystals decompose in a unique way different to all other metal-halides. Li diffuses rapidly out of the salt crystal and covers its surface and the surrounding C-support film to many microns distance, where at random positions nucleation, growth and annihilation of Li nanorods and some nanospheres is observable. Decomposition of CoF2 also involves non-local synthesis of Co nanoparticles, mostly facetted, however, these are stable, without annihiliation, and their positioning seems to follow some degree of self-organisation. AlF3 transforms locally to Al grains inside the irradiated area only, and grain growth occurs to sizes proportional to the beam intensity. Findings are discussed in terms of displacement energy differences between the materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.