Abstract

AbstractThe effects of electron‐beam irradiation on morphology, mechanical properties and on the heat and hot oil resistance of the thermoplastic elastomeric blend of 30:70 and 70:30, nylon 6 and hydrogenated nitrile rubber (HNBR) were investigated over the dose range 0–8 Mrad. The insoluble content of blends increased with increase in the radiation dose. The morphology of the blend was studied in scanning electron microscopy, with special reference to the effect of radiation prior to processing via injection molding. Irradiated pellets showed better mechanical properties after injection molding compared with irradiated sheets at low radiation dose. The observed differences in mechanical properties are explained on the basis of morphology of the blend. The blend properties were also found to have a strong dependence on nylon content. It was found that the blends rich in nylon had superior mechanical properties, hot oil and solvent resistance, whereas blends with higher HNBR content had better set and heat resistance. The effect of radiation on interaction in these blends was also evaluated and was found to induce possible inter‐chain crosslinking in the blends. Copyright © 2006 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.