Abstract

To enhance the process stability and densification, semi-melt step has been introduced when fabricating the TiC/high Nb–TiAl nanocomposite via electron beam melting. The homogenous TiAl matrix microstructure with dispersed nano-scale carbides was realised. During the EBM melt, most TiC nanoparticles dissolved and Ti2AlC formed with near-spherical and rod-like shapes. The particles had an influence on solidification behaviour and the subsequent microstructural degradation. High Nb–TiAl nanocomposites with 1.2 wt% TiC addition exhibited a duplex microstructure with dispersed carbides, while a nearly lamellar microstructure (carbide-free) was found in samples with 0.6 and 0.8 wt% TiC. Furthermore, a lower scanning speed resulted in higher relative density, greater Al loss, increased α2-phase but reduced carbide fractions. The microhardness of 433 ± 10 HV0.2, ultimate tensile strength of 657 ± 155 MPa and fracture toughness of 8.1 ± 0.1 MPa√m in 1.2 wt% TiC/high Nb–TiAl nanocomposite processed by EBM are very promising. In addition, the compressive yield strength of 1085 ± 55 MPa, fracture strength of 2698 ± 34 MPa and strain to fracture of 26.1 ± 1.0%, are superior to those processed by conventional means. The strengthening and toughening mechanisms have been interpreted on the basis of crack path observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call