Abstract

Electron vortex beams (EVBs) are an appealing topic, both in fundamental science and for practical applications in electron microscopy [1, 2]. Some of the most promising applications require beams that have large orbital angular momentum (OAM) [2, 3, 4]. Here, we demonstrate the largest (L=1000 ħ) high quality EVB by using electron beam lithography (EBL) to fabricate a phase hologram. EBL provides superior fabrication quality and a larger number of addressable points when compared with focused ion beam (FIB) milling. We measure the OAM of the generated EVB through propagation after a hard aperture cut [5]. Comparisons with simulations confirm an average OAM of (960±120)ħ , which is consistent with the intended value. A clear improvement when compared with a FIB‐nanofabricated hologram is demonstrated in terms of 1) the maximum OAM that can be reached; 2) the minimum feature size (33 nm in the present study); 3) the improved uniformity of the frequency response; 4) the better suppression of higher order diffraction due to a nearly perfect rectangular groove profile. We believe that EBL will be the fabrication technique of choice for most new diffractive optics with electrons in the future, permitting more complex holograms and new applications in material science.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.